SIFAT-SIFAT DETERMINAN MATRIKS

Oktober 5th, 2016

Jika diketahui matriks persegi A ~=~ delim{[}{matrix{4}{4}{2 1 3 1 3 0 {-6} 0 5 {-1} 0 {-1} {-3} 4 1 4}}{]}, berapakah |A| (yaitu determinan dari A)? Bagi Anda yang tidak mengenal sifat-sifat matriks, tentu membutuhkan waktu lama untuk menjawab pertanyaan ini. Perhatikanlah bahwa kolom ke-2 dan ke-4 matriks tersebut memiliki elemen-elemen yang sama. Tentunya determinan matriks ini adalah nol, |A| = 0. Inilah salah satu manfaatnya apabila kita mengenal sifat-sifat determinan matriks. Mari kita lihat satu demi satu sifat-sifat determinan matriks.

 

Sifat 1

Jika setiap elemen suatu baris (atau kolom) dari suatu matriks persegi A bernilai nol maka |A| = 0.

 

Ilustrasi:

Misalkan A ~=~ delim{[}{matrix{3}{3}{2 1 3 0 0 0 {-6} 0 5}}{]}. Perhatikan bahwa baris kedua matriks ini memiliki semua elemennya nol. Menurut Sifat 1 ini, |A| = 0. Sifat ini tetap berlaku apabila suatu baris pada matriks tersebut memiliki semua elemennya bernilai nol.

 

Sifat 2

Determinan suatu matriks persegi sama dengan determinan matriks transposnya. (Berdasarkan sifat ini, setiap dalil mengenai determinan yang berkenaan dengan baris berlaku juga untuk kolom, demikian juga sebaliknya.

 

Ilustrasi:

Misalkan A ~=~ delim{[}{matrix{3}{3}{2 1 3 0 7 0 {-6} 0 5}}{]}.

Karena itu A^T ~=~ delim{[}{matrix{3}{3}{2 0 {-6} 1 7 0 3 0 5}}{]}.

Dapat ditunjukkan bahwa |A| = 1260. Karena AT adalah matriks transpos dari A, maka (menurut sifat ini) |AT| = 1260.

 

Sifat 3a

Jika setiap elemen suatu baris (atau kolom) suatu matriks persegi A dikalikan dengan suatu skalar k, maka determinan matriks yang baru ini adalah sebesar k.|A|.

 

Ilustrasi:

Misalkan A ~=~ delim{[}{matrix{3}{3}{2 1 3 5 7 1 {-6} 0 5}}{]} dan B ~=~ delim{[}{matrix{3}{3}{2 1 {-6} 5 7 {-2} {-6} 0 {-10}}}{]}. Dapat ditunjukkan bahwa |A| = 165. Perhatikan bahwa matriks B diperoleh dengan cara mengalikan kolom ke-3 matriks A dengan suatu suatu skalar k = -2. Menurut sifat ini, |B| = -2|A| = -2.165 = -330.

 

Sifat 3b

Jika setiap elemen suatu baris (atau kolom) dari suatu matriks A yang determinannya |A| memiliki k sebagai suatu faktor persekutuan maka k dapat difaktorkan dari |A|.

 

Sifat ini berguna agar dalam situasi-situasi tertentu, penghitungan determinan melibatkan bilangan-bilangan yang lebih kecil nilainya.

 

Ilustrasi:

Untuk menghitung delim{|}{matrix{3}{3}{2 1 3 {85} {119} {17} {-6} 0 5}}{|}, agar terhindar dari pengolahan bilangan-bilangan yang besar nilainya, kita dapat melakukannya sebagai berikut.

delim{|}{matrix{3}{3}{2 1 3 {85} {119} {17} {-6} 0 5}}{|} ~=~ 17 delim{|}{matrix{3}{3}{2 1 3 5 7 1 {-6} 0 5}}{|} ~=~ 17.165 ~=~ 2805

 

Sifat 4

Jika matriks persegi B diperoleh dari matriks A dengan cara menukar sembarang dua baris (atau kolom) yang bersebelahan maka |B| = -|A|.

 

Ilustrasi:

Misalkan A ~=~ delim{[}{matrix{3}{3}{2 1 3 5 7 1 {-6} 0 5}}{]} dan B ~=~ delim{[}{matrix{3}{3}{5 7 1 2 1 3 {-6} 0 5}}{]}. Dapat ditunjukkan bahwa |A| = 165. Karena matriks B diperoleh dengan cara menukarkan baris pertama dan kedua dari matriks A (yaitu dua baris yang bersebelahan), maka menurut sifat ini |B| = -165.

 

Sifat 5

Jika dua baris (atau kolom) suatu matriks persegi sama maka determinan matriks tersebut adalah nol.

 

Ilustrasi

Perhatikan matriks persegi A ~=~ delim{[}{matrix{4}{4}{2 1 3 1 3 0 {-6} 0 5 {-1} 0 {-1} {-3} 4 1 4}}{]}, yaitu matriks yang dipertanyakan determinannya di bagian awal post ini. Kolom kedua dan keempat matriks ini sama, sehingga determinannya pasti bernilai nol.

 

Sifat 6

Jika matriks persegi B diperoleh dari matriks A dengan cara menambahkan pada elemen-elemen pada baris (atau kolom) ke-i suatu baris (atau kolom) yang elemen-elemennya adalah kelipatan skalar dari baris (atau kolom) lainnya dari matriks A tersebut, maka |B| = |A|.

 

Ilustrasi:

Misalkan A ~=~ delim{[}{matrix{3}{3}{{-2} 1 4 3 0 {-1} 0 2 3}}{]} dan B ~=~ delim{[}{matrix{3}{3}{{-2} 5 {10} 3 0 {-1} 0 2 3}}{]}. Perhatikan bahwa baris pertama B, yaitu (-2 5 10) adalah penjumlahan baris ke-1 matriks A dengan 2 kali baris ke-3 matriks A:

(-2 5 10) = (-2 1 4) + 2.(0 2 3)

Anda dapat membuktikan sendiri bahwa |B| = |A| = 11.

Tagging:

Most visitors also read :



Tinggalkan Balasan

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *